At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the rate at which the water level is rising, we can use the formula for the volume of a cylinder: V = πr^2h, where r is the radius and h is the height of the water.
Given that the radius is 1 and the length is 2, the volume V = π(1)^2(2) = 2π.
Since water is being pumped in at a rate of m^3 per minute, the rate of change of volume with respect to time is dm/dt = m.
To find the rate at which the water level is rising when the water is m deep, we can differentiate the volume formula with respect to time t: dV/dt = πr^2 dh/dt.
Substitute the known values:
2π = π(1)^2 dh/dt,
2 = dh/dt.
Therefore, the rate at which the water level is rising when the water is m deep is 2 units per minute.
Given that the radius is 1 and the length is 2, the volume V = π(1)^2(2) = 2π.
Since water is being pumped in at a rate of m^3 per minute, the rate of change of volume with respect to time is dm/dt = m.
To find the rate at which the water level is rising when the water is m deep, we can differentiate the volume formula with respect to time t: dV/dt = πr^2 dh/dt.
Substitute the known values:
2π = π(1)^2 dh/dt,
2 = dh/dt.
Therefore, the rate at which the water level is rising when the water is m deep is 2 units per minute.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.