Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's tackle each part of the question step-by-step.
### Part (a): Expand [tex]\( f(z) = \ln(z) \)[/tex] Centered at [tex]\( c = 1 \)[/tex] Using Taylor Series
To expand [tex]\( f(z) = \ln(z) \)[/tex] around [tex]\( z = 1 \)[/tex] using the Taylor series, we consider the series:
[tex]\[ f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(1)}{n!} (z - 1)^n \][/tex]
where [tex]\( f^{(n)} \)[/tex] denotes the n-th derivative of [tex]\( f \)[/tex] evaluated at [tex]\( z=1 \)[/tex].
- For [tex]\( n = 0 \)[/tex], [tex]\( f(1) = \ln(1) = 0 \)[/tex]
- For [tex]\( n = 1 \)[/tex], [tex]\( f'(z) = \frac{1}{z} \)[/tex] and [tex]\( f'(1) = 1 \)[/tex]
- For [tex]\( n = 2 \)[/tex], [tex]\( f''(z) = -\frac{1}{z^2} \)[/tex] and [tex]\( f''(1) = -1 \)[/tex]
- For [tex]\( n = 3 \)[/tex], [tex]\( f'''(z) = \frac{2}{z^3} \)[/tex] and [tex]\( f'''(1) = 2 \)[/tex]
- And so on...
Following this pattern, we can write the first few terms of the Taylor series expansion:
[tex]\[ \ln(z) \approx (z - 1) - \frac{(z - 1)^2}{2} + \frac{(z - 1)^3}{3} - \frac{(z - 1)^4}{4} + \cdots \][/tex]
The expansion up to the 9th term is:
[tex]\[ \ln(z) \approx -1 - \frac{(z - 1)^2}{2} + \frac{(z - 1)^3}{3} - \frac{(z - 1)^4}{4} + \frac{(z - 1)^5}{5} - \frac{(z - 1)^6}{6} + \frac{(z - 1)^7}{7} - \frac{(z - 1)^8}{8} + \frac{(z - 1)^9}{9} + z + O((z-1)^{10}) \][/tex]
The above expression provides us the Taylor series expansion of [tex]\( \ln(z) \)[/tex] around [tex]\( z = 1 \)[/tex].
### Part (b): Using Maclaurin Series for [tex]\( f(x) = \sin(x) \)[/tex]
The Maclaurin series for a function [tex]\( f(x) \)[/tex] is a special case of the Taylor series centered at [tex]\( x = 0 \)[/tex]. For [tex]\( f(x) = \sin(x) \)[/tex], the series is:
[tex]\[ f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n \][/tex]
The sine function is an odd function, so only odd powers of [tex]\( x \)[/tex] appear in its series expansion. Its derivatives alternate in a specific pattern due to the trigonometric properties:
- [tex]\( f(0) = \sin(0) = 0 \)[/tex]
- [tex]\( f'(0) = \cos(0) = 1 \)[/tex]
- [tex]\( f''(0) = -\sin(0) = 0 \)[/tex]
- [tex]\( f'''(0) = -\cos(0) = -1 \)[/tex]
- [tex]\( f^{(4)}(0) = \sin(0) = 0 \)[/tex]
- And so on...
Thus, the Maclaurin series for [tex]\( \sin(x) \)[/tex] is:
[tex]\[ \sin(x) \approx x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040} + \frac{x^9}{362880} + O(x^{10}) \][/tex]
This expansion provides us with the Maclaurin series of [tex]\( \sin(x) \)[/tex] up to the 9th power of [tex]\( x \)[/tex].
Together, these expansions answer both parts of the question comprehensively.
### Part (a): Expand [tex]\( f(z) = \ln(z) \)[/tex] Centered at [tex]\( c = 1 \)[/tex] Using Taylor Series
To expand [tex]\( f(z) = \ln(z) \)[/tex] around [tex]\( z = 1 \)[/tex] using the Taylor series, we consider the series:
[tex]\[ f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(1)}{n!} (z - 1)^n \][/tex]
where [tex]\( f^{(n)} \)[/tex] denotes the n-th derivative of [tex]\( f \)[/tex] evaluated at [tex]\( z=1 \)[/tex].
- For [tex]\( n = 0 \)[/tex], [tex]\( f(1) = \ln(1) = 0 \)[/tex]
- For [tex]\( n = 1 \)[/tex], [tex]\( f'(z) = \frac{1}{z} \)[/tex] and [tex]\( f'(1) = 1 \)[/tex]
- For [tex]\( n = 2 \)[/tex], [tex]\( f''(z) = -\frac{1}{z^2} \)[/tex] and [tex]\( f''(1) = -1 \)[/tex]
- For [tex]\( n = 3 \)[/tex], [tex]\( f'''(z) = \frac{2}{z^3} \)[/tex] and [tex]\( f'''(1) = 2 \)[/tex]
- And so on...
Following this pattern, we can write the first few terms of the Taylor series expansion:
[tex]\[ \ln(z) \approx (z - 1) - \frac{(z - 1)^2}{2} + \frac{(z - 1)^3}{3} - \frac{(z - 1)^4}{4} + \cdots \][/tex]
The expansion up to the 9th term is:
[tex]\[ \ln(z) \approx -1 - \frac{(z - 1)^2}{2} + \frac{(z - 1)^3}{3} - \frac{(z - 1)^4}{4} + \frac{(z - 1)^5}{5} - \frac{(z - 1)^6}{6} + \frac{(z - 1)^7}{7} - \frac{(z - 1)^8}{8} + \frac{(z - 1)^9}{9} + z + O((z-1)^{10}) \][/tex]
The above expression provides us the Taylor series expansion of [tex]\( \ln(z) \)[/tex] around [tex]\( z = 1 \)[/tex].
### Part (b): Using Maclaurin Series for [tex]\( f(x) = \sin(x) \)[/tex]
The Maclaurin series for a function [tex]\( f(x) \)[/tex] is a special case of the Taylor series centered at [tex]\( x = 0 \)[/tex]. For [tex]\( f(x) = \sin(x) \)[/tex], the series is:
[tex]\[ f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n \][/tex]
The sine function is an odd function, so only odd powers of [tex]\( x \)[/tex] appear in its series expansion. Its derivatives alternate in a specific pattern due to the trigonometric properties:
- [tex]\( f(0) = \sin(0) = 0 \)[/tex]
- [tex]\( f'(0) = \cos(0) = 1 \)[/tex]
- [tex]\( f''(0) = -\sin(0) = 0 \)[/tex]
- [tex]\( f'''(0) = -\cos(0) = -1 \)[/tex]
- [tex]\( f^{(4)}(0) = \sin(0) = 0 \)[/tex]
- And so on...
Thus, the Maclaurin series for [tex]\( \sin(x) \)[/tex] is:
[tex]\[ \sin(x) \approx x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040} + \frac{x^9}{362880} + O(x^{10}) \][/tex]
This expansion provides us with the Maclaurin series of [tex]\( \sin(x) \)[/tex] up to the 9th power of [tex]\( x \)[/tex].
Together, these expansions answer both parts of the question comprehensively.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.