Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
1>
Let the base be "x"
According to the question,
h = x - 13
A = 24 in sq.
Now,
[tex] Area of triangle = \frac{1}{2}~b~h [/tex]
[tex]24= \frac{1}{2}(x)(x-13) [/tex]
[tex]24 *2= (x)(x-13) [/tex]
[tex]48= x^{2} - 13x[/tex]
[tex]0= x^{2} - 13x -48[/tex]
Factorizing the equation, x² - 13x -48, we get,
[tex]0= x^{2}+3x - 16x -48[/tex]
[tex]0= x(x+3) - 16(x+3)[/tex]
[tex]0= (x + 3)(x-16)[/tex]
NOW, using zero product property, we get,
Either,
x + 3 = 0
x = -3
Or,
x - 16 = 0
x = 16
Since, distance can't be negative, we have, x = 16 in.
So, the length of the base is 16 inches.
2>
umm...i don't know how to do it...can you post a picture of the same kind of (solved) question....i mean like an example
Let the base be "x"
According to the question,
h = x - 13
A = 24 in sq.
Now,
[tex] Area of triangle = \frac{1}{2}~b~h [/tex]
[tex]24= \frac{1}{2}(x)(x-13) [/tex]
[tex]24 *2= (x)(x-13) [/tex]
[tex]48= x^{2} - 13x[/tex]
[tex]0= x^{2} - 13x -48[/tex]
Factorizing the equation, x² - 13x -48, we get,
[tex]0= x^{2}+3x - 16x -48[/tex]
[tex]0= x(x+3) - 16(x+3)[/tex]
[tex]0= (x + 3)(x-16)[/tex]
NOW, using zero product property, we get,
Either,
x + 3 = 0
x = -3
Or,
x - 16 = 0
x = 16
Since, distance can't be negative, we have, x = 16 in.
So, the length of the base is 16 inches.
2>
umm...i don't know how to do it...can you post a picture of the same kind of (solved) question....i mean like an example
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.