Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Use the trigonometric identities:
[tex]\sec x= \frac{1}{\cos x} \\ \tan x= \frac{\sin x}{\cos x} \\ \sin^2 x+ \cos^2 x=1[/tex]
[tex]\sec^2 x-1=\tan^2 x \\ (\frac{1}{\cos x})^2-1=(\frac{\sin x}{\cos x})^2 \\ \frac{1}{\cos^2 x}-1 = \frac{\sin^2 x }{\cos^2 x} \ \ \ |\times \cos^2 x \\ 1-\cos^2 x=\sin^2 x \ \ \ |+\cos^2 x \\ \sin^2x+\cos^2x=1 \\ \boxed{\hbox{true}}[/tex]
[tex]\sec x= \frac{1}{\cos x} \\ \tan x= \frac{\sin x}{\cos x} \\ \sin^2 x+ \cos^2 x=1[/tex]
[tex]\sec^2 x-1=\tan^2 x \\ (\frac{1}{\cos x})^2-1=(\frac{\sin x}{\cos x})^2 \\ \frac{1}{\cos^2 x}-1 = \frac{\sin^2 x }{\cos^2 x} \ \ \ |\times \cos^2 x \\ 1-\cos^2 x=\sin^2 x \ \ \ |+\cos^2 x \\ \sin^2x+\cos^2x=1 \\ \boxed{\hbox{true}}[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.