Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
x^2=4x-5
subtract 4x from both sides
x^2-4x=-5
add 5 to both sides
x^2-4x+5=0
input into quadratic formula which is x=[tex] \frac{-b+ \sqrt{b^2-4ac} }{2a} [/tex] or [tex] \frac{-b- \sqrt{b^2-4ac} }{2a} [/tex]
si ax^2+bx+c
so a=1
b=-4
c=5
input
[tex] \frac{-(-4)+ \sqrt{-4^2-4(1)(5)} }{2(1)} [/tex]=[tex] \frac{4+ \sqrt{16-20} }{2(1)} [/tex]=[tex] \frac{4+ \sqrt{-4} }{2} [/tex]=[tex] \frac{4+ \sqrt{4} times \sqrt{-1} }{2} [/tex] [tex] \frac{4+2 times \sqrt{-1} }{2}= \frac{6 times \sqrt{-1} }{2}=3 times \sqrt{-1} [\tex][\tex]\sqrt{-1} [/tex] representeds by 'i' so solution is 3i
then if other way around then wyou would do
[tex] \frac{-(-4)- \sqrt{-4^2-4(1)(5)} }{2(1)} [/tex]=[tex] \frac{4- \sqrt{16-20} }{2(1)}= \frac{4- \sqrt{-4} }{2} =\frac{4- \sqrt{4} times \sqrt{-1} }{2}= \frac{4-2 times \sqrt{-1} }{2}=\frac{2 \sqrt{-1} }{2}= \sqrt{-1} [/tex] and [\tex]\sqrt{-1} [/tex] is represented by i
the solution is x=3i or i (i=[tex] \sqrt{-1} [/tex])
but i is not real, it is imaginary so there are no real solution so the answer is C
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.