Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
So,
All we have to do is subtract the smaller cone's volume from the larger cone's volume.
First, we will use the formula for the volume of a cone to find the volume of the larger cone.
[tex]V_{1} = \frac{1}{3}\pi r^2h[/tex]
Substitute.
[tex]V_{1} = \frac{1}{3}(3.14)(6)^2(18)[/tex]
Simplify exponents.
[tex]V_{1} = \frac{1}{3}(3.14)(36)(18)[/tex]
Multiply. We will do the fraction last.
[tex]V_{1} = \frac{1}{3}(113.04)(18)[/tex]
[tex]V_{1} = \frac{1}{3}(2034.72)[/tex]
[tex]V_{1} = 678.24\ cm^3[/tex]
Now, use the same formula and procedure to find the volume of the smaller cone.
[tex]V_{2} = \frac{1}{3}\pi r^2h[/tex]
[tex]V_{2} = \frac{1}{3}(3.14)(6)^2(6)[/tex]
Exponents first, and then multiplication, leaving the fraction last.
[tex]V_{2} = \frac{1}{3}(3.14)(36)(6)[/tex]
[tex]V_{2} = \frac{1}{3}(113.04)(6)[/tex]
[tex]V_{2} = \frac{1}{3}(678.24)[/tex]
[tex]V_{2} = 226.08\ cm^3[/tex]
Now, use this formula to find the answer:
[tex]V_{2} - V_{1} = Ans[/tex]
And substitute the now known values.
[tex]678.24 - 226.08 = Ans[/tex]
[tex]452.16\ cm^3 = Ans[/tex]
Remi must put 452.16 cubic centimeters of water into the larger container.
All we have to do is subtract the smaller cone's volume from the larger cone's volume.
First, we will use the formula for the volume of a cone to find the volume of the larger cone.
[tex]V_{1} = \frac{1}{3}\pi r^2h[/tex]
Substitute.
[tex]V_{1} = \frac{1}{3}(3.14)(6)^2(18)[/tex]
Simplify exponents.
[tex]V_{1} = \frac{1}{3}(3.14)(36)(18)[/tex]
Multiply. We will do the fraction last.
[tex]V_{1} = \frac{1}{3}(113.04)(18)[/tex]
[tex]V_{1} = \frac{1}{3}(2034.72)[/tex]
[tex]V_{1} = 678.24\ cm^3[/tex]
Now, use the same formula and procedure to find the volume of the smaller cone.
[tex]V_{2} = \frac{1}{3}\pi r^2h[/tex]
[tex]V_{2} = \frac{1}{3}(3.14)(6)^2(6)[/tex]
Exponents first, and then multiplication, leaving the fraction last.
[tex]V_{2} = \frac{1}{3}(3.14)(36)(6)[/tex]
[tex]V_{2} = \frac{1}{3}(113.04)(6)[/tex]
[tex]V_{2} = \frac{1}{3}(678.24)[/tex]
[tex]V_{2} = 226.08\ cm^3[/tex]
Now, use this formula to find the answer:
[tex]V_{2} - V_{1} = Ans[/tex]
And substitute the now known values.
[tex]678.24 - 226.08 = Ans[/tex]
[tex]452.16\ cm^3 = Ans[/tex]
Remi must put 452.16 cubic centimeters of water into the larger container.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.