Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
[tex]A=(-4,3),B=(-1,1),C=(1,3)\\
|AB|=\sqrt{(-4+1)^2+(3-1)^2}=\sqrt{9+4}=\sqrt{13}\\
|BC|=\sqrt{(-1-1)^2+(1-3)^2}=\sqrt{4+4}=\sqrt{8}\\
|AC|=\sqrt{(-4-1)^2+(3-3)^2}=\sqrt{25+0}=5\\
L=\sqrt{13}^2+\sqrt{8}^2=13+8=21\neq5^2\neq\ R[/tex]
It's impossible to form right triangle using thes points.
It's impossible to form right triangle using thes points.
Answer:
The given points of triangle do not form a right triangle because they are satisfying the property of right angle triangle.
Step-by-step explanation:
Given : The points (-4,3), (-1,1) and (1,3)
To find : Could the points form the vertices of a right triangle? Why or why not?
Solution :
First we find the distance between the points so that we get the length of the sides.
Let, A=(-4,3), B=(-1,1), C=(1,3)
Distance formula is
[tex]d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}[/tex]
The distance between point A and B
[tex]|AB|=\sqrt{(-4+1)^2+(3-1)^2}=\sqrt{9+4}=\sqrt{13}[/tex]
The distance between point B and C
[tex]|BC|=\sqrt{(-1-1)^2+(1-3)^2}=\sqrt{4+4}=\sqrt{8}[/tex]
The distance between point A and C
[tex]|AC|=\sqrt{(-4-1)^2+(3-3)^2}=\sqrt{25+0}=5[/tex]
According to property of triangle,
If the square of larger side of triangle is equating to the sum of square of smaller side [tex]a^2=b^2+c^2[/tex] the triangle is right triangle .
Larger side of the triangle is AC=5 unit and smaller sides are [tex]AB=\sqrt{13}[/tex] and [tex]BC=\sqrt{8}[/tex]
[tex]AC^2=AB^2+BC^2[/tex]
[tex]5^2=\sqrt{13}^2+\sqrt{8}^2[/tex]
[tex]25=13+8[/tex]
[tex]25\neq21[/tex]
So, The given points or the vertices of triangle do not form a right triangle because they are satisfying the property of right angle triangle.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.