At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Find in simplest radical form, the length of the line segment with endpoints whose coordinates are (-1,4) and (3,-2)?


Sagot :

[tex]d = \sqrt{(x_2 - x_1)^{2} + (y_2 - y_1)^{2}} \\d = \sqrt{(3 - (-1))^{2} + (-2 - 4)^{2}} \\d = \sqrt{(3 + 1)^{2} + (-6)^{2}} \\d = \sqrt{(4)^{2} + 36} \\d = \sqrt{16 + 36} \\d = \sqrt{52} \\d = 2\sqrt{13}[/tex]
Louli

Answer:

The distance is [tex] 2\sqrt{13} [/tex] units


Explanation:

The distance between two points can be calculated using the following rule:

distance = [tex] \sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2} [/tex]


The given points are:

(-1,4) representing (x₁,y₁)

(3,-2) representing (x₂,y₂)


Substitute in the formula with the givens to get the distance as follows:

distance = [tex] \sqrt{(3--1)^2+(-2-4)^2} = 2\sqrt{13} [/tex] units


Hope this helps :)