Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
When a quadratic is in the form [tex]y=ax^2+bx+c[/tex], your min/max = [tex]c-\frac{b^2}{4a}[/tex].
When a quadratic is in the form [tex]y=a(x-h)^2+k[/tex], your min/max = [tex]k[/tex].
Let's take a look at all of these answers.
1) y = x² + 16
#1 in is general form. (y=ax²+bx+c)
a=1, b=0, c=16.
[tex]16-\frac{0^2}{4*1}=\boxed{16}[/tex]
So we know that the min/max is 16. We don't know which it is, though.
2) y = -x² + 16
I've rearranged this equation to general form.
As you can see, this will have the same outcome as the previous, with the min/max being 16.
3) y = (x-16)²
This is in y = (x-h)² + k form, but there is no k, thus the min/max k = 0.
This is also true for 4) y = (x+16)².
Let's go back to #1 and #2.
While vertex form y = (x-h)² + k makes finding the vertex easy, it is a lot easier to know whether we have a minimum or a maximum in y = ax² + by + c form.
Simply put: If a is positive, the parabola opens upwards and we have a min.
If a is negative, it opens downwards and we have a max.
We want a maximum value of 16, so that means negative a.
Thus our answer is 2) y = -x² + 16
When a quadratic is in the form [tex]y=a(x-h)^2+k[/tex], your min/max = [tex]k[/tex].
Let's take a look at all of these answers.
1) y = x² + 16
#1 in is general form. (y=ax²+bx+c)
a=1, b=0, c=16.
[tex]16-\frac{0^2}{4*1}=\boxed{16}[/tex]
So we know that the min/max is 16. We don't know which it is, though.
2) y = -x² + 16
I've rearranged this equation to general form.
As you can see, this will have the same outcome as the previous, with the min/max being 16.
3) y = (x-16)²
This is in y = (x-h)² + k form, but there is no k, thus the min/max k = 0.
This is also true for 4) y = (x+16)².
Let's go back to #1 and #2.
While vertex form y = (x-h)² + k makes finding the vertex easy, it is a lot easier to know whether we have a minimum or a maximum in y = ax² + by + c form.
Simply put: If a is positive, the parabola opens upwards and we have a min.
If a is negative, it opens downwards and we have a max.
We want a maximum value of 16, so that means negative a.
Thus our answer is 2) y = -x² + 16
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.