Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Question: Evaluate/death stare at [tex]log_{\frac{1}6}(5)[/tex].
Let's talk about what logarithms mean.
Suppose [tex]log_{\frac{1}6}(5)=x[/tex].
That's the same thing as [tex]5=(\frac{1}6)^x[/tex]. It's just been simplified.
(Logarithms are the inverse operations of exponents)
We can use a calculator to evaluate logarithms that are in base 10.
(In this case, the base is 1/6)
How can we change this so that it uses just base 10?
We can use something called the change-of-base formula.
Here's what the change of base formula looks like.
[tex]log_x(n)=\frac{log_y(n)}{log_y(x)}[/tex]
In this case, we'll set the base [tex]y[/tex] to be 10. (you can set it to whatever you want) [tex]x[/tex] is going to be 1/6, and [tex]n[/tex] is 5.
When the base is 10, we don't have to write it, it's like a plus zero or a times one.
[tex]log_\frac{1}6(5)=\frac{log(5)}{log(\frac{1}6)}[/tex]
Punch this into a calculator to find your answer.
[tex]\frac{log(5)}{log(\frac{1}6)} \approx \boxed{-0.8982444017}[/tex]
You can always check your answer if you need to, of course.
[tex](\frac{1}6)^{-0.8982444017} \approx 5[/tex]
Let's talk about what logarithms mean.
Suppose [tex]log_{\frac{1}6}(5)=x[/tex].
That's the same thing as [tex]5=(\frac{1}6)^x[/tex]. It's just been simplified.
(Logarithms are the inverse operations of exponents)
We can use a calculator to evaluate logarithms that are in base 10.
(In this case, the base is 1/6)
How can we change this so that it uses just base 10?
We can use something called the change-of-base formula.
Here's what the change of base formula looks like.
[tex]log_x(n)=\frac{log_y(n)}{log_y(x)}[/tex]
In this case, we'll set the base [tex]y[/tex] to be 10. (you can set it to whatever you want) [tex]x[/tex] is going to be 1/6, and [tex]n[/tex] is 5.
When the base is 10, we don't have to write it, it's like a plus zero or a times one.
[tex]log_\frac{1}6(5)=\frac{log(5)}{log(\frac{1}6)}[/tex]
Punch this into a calculator to find your answer.
[tex]\frac{log(5)}{log(\frac{1}6)} \approx \boxed{-0.8982444017}[/tex]
You can always check your answer if you need to, of course.
[tex](\frac{1}6)^{-0.8982444017} \approx 5[/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.