Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
[tex]f(x)=x^3-2x^2+5x+1\\ f'(x)=3x^2-4x+5\\
3x^2-4x+5=0\\\Delta=(-4)^2-4\cdot3\cdot5=16-60=-44[/tex]
[tex]\Delta<0 \wedge a>0 \Rightarrow[/tex] the graph of the parabola is above the x-axis, so the derivative is always positive and therefore the initial function is increasing in its whole domain.
[tex]f(x)=0.5x^2-6\\ f'(x)=x[/tex]
The function is decreasing when its first derivative is negative. The first derivative of this function is negative for [tex]x<0[/tex] so for [tex]x\in(-\infty,0)[/tex] the function is decreasing.
[tex]f(x)=\dfrac{x+1}{x-1}\qquad(x\not=1)\\ f'(x)=\dfrac{x-1-(x+1)}{(x-1)^2}=-\dfrac{2}{(x-1)^2}[/tex]
The function is increasing when its first derivative is positive. The first derivative of this function is always negative therefore this function is never increasing.
[tex]\Delta<0 \wedge a>0 \Rightarrow[/tex] the graph of the parabola is above the x-axis, so the derivative is always positive and therefore the initial function is increasing in its whole domain.
[tex]f(x)=0.5x^2-6\\ f'(x)=x[/tex]
The function is decreasing when its first derivative is negative. The first derivative of this function is negative for [tex]x<0[/tex] so for [tex]x\in(-\infty,0)[/tex] the function is decreasing.
[tex]f(x)=\dfrac{x+1}{x-1}\qquad(x\not=1)\\ f'(x)=\dfrac{x-1-(x+1)}{(x-1)^2}=-\dfrac{2}{(x-1)^2}[/tex]
The function is increasing when its first derivative is positive. The first derivative of this function is always negative therefore this function is never increasing.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.