Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
ANSWER
The x-coordinate of the x-intercept of the function [tex]f(x)=x^3-x^2-x+1[/tex] is [tex]-1[/tex].
EXPLANATION:
The x-intercept refers to the point where the function meets or cuts the x-axis.
At the x-intercept, [tex]f(x)=0[/tex].
This means we have to equate the whole function to zero and solve for [tex]x[/tex].
[tex]x^3-x^2-x+1=0[/tex]
According to the rational roots theorem, the possible rational roots of the equation [tex]x^3-x^2-x+1=0[/tex] are [tex]\pm 1[/tex].
We now plug in these possible rational roots to see which of them are real roots.
[tex]f(1)=1^3-1^2-1+1[/tex]
[tex]f(1)=1-1-1+1[/tex]
[tex]f(1)=-1+1[/tex]
[tex]f(1)=0[/tex]
Since [tex]f(1)=0[/tex], [tex]x=-1[/tex] is a root.
By the factor theorem, [tex]x+1[/tex] is a factor of the function.
We now divide the polynomial function, [tex]x^3-x^2-x+1=0[/tex] by [tex]x+1[/tex] to find the remaining roots.
See long division in diagram.
This means that [tex]f(x)=(x+1)(x^2-2x+1)[/tex].
Or
[tex]f(x)=(x+1)(x-1)^2[/tex]
[tex]\Rightarrow (x+1)(x-1)^2=0[/tex]
Hence the roots are [tex]x=1[/tex] or [tex]x=-1[/tex]
In the second quadrant the x-coordinate is negative
Therefore, the x-coordinate of the x-intercept of the function [tex]f(x)=x^3-x^2-x+1[/tex] is [tex]-1[/tex].
See graph in attachment


Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.