Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Identify the absolute extrema of the function and the x-values where they occur.

f(x)=6x+(24/x^sqr)+3, x>0


Sagot :

[tex]f(x)=6x+\dfrac{24}{x^2}+3\\ f'(x)=6-\dfrac{48}{x^3}\\ 6-\dfrac{48}{x^3}=0\\ 6x^3-48=0\\ 6x^3=48\\ x^3=8\\ x=2\\ [/tex]

For [tex]x<2 \wedge x\not=0[/tex] the derivative is negative.
For [tex]x>2[/tex] the derivative is positive.
Therefore at [tex]x=2[/tex] there's a minimum.

[tex]f_{min}=6\cdot2+\dfrac{24}{2^2}+3=12+6+3=21[/tex]