Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
[tex]\int 3^{\tfrac{x}{2}}\, dx=(*)\\
t=\dfrac{x}{2}\\
dt=\dfrac{x}{2}\, dx\\
dx=2\, dt\\
(*)=\int 3^t\cdot2\, dt=\\
2\int 3^t \, dt=\\
2\cdot\dfrac{3^t}{\ln 3}+C=\\
\boxed{\dfrac{2\cdot3^{\tfrac{x}{2}}}{\ln 3}+C}
[/tex]
[tex]\int { { 3 }^{ \frac { x }{ 2 } } } dx\\ \\ =\int { { \left( { 3 }^{ x } \right) }^{ \frac { 1 }{ 2 } } } dx[/tex]
However:
[tex]u={ 3 }^{ x }\\ \\ \therefore \quad \frac { du }{ dx } ={ 3 }^{ x }\cdot \ln { 3 } \\ \\ \therefore \quad du={ 3 }^{ x }\cdot \ln { 3 } dx\\ \\ \therefore \quad dx=\frac { 1 }{ { 3 }^{ x }\cdot \ln { 3 } } du=\frac { 1 }{ u\cdot \ln { 3 } } du[/tex]
So let's use:
[tex]\int { { u }^{ \frac { 1 }{ 2 } } } \cdot \frac { 1 }{ u\cdot \ln { 3 } } du\\ \\ =\int { \frac { 1 }{ \ln { 3 } } } \cdot { u }^{ -\frac { 1 }{ 2 } }du[/tex]
But you need to know that:
[tex]\int { k{ u }^{ n } } du\\ \\ =\frac { k{ u }^{ n+1 } }{ n+1 } +C[/tex]
Therefore:
[tex]\int { \frac { 1 }{ \ln { 3 } } } \cdot { u }^{ -\frac { 1 }{ 2 } }du\\ \\ =\frac { \frac { 1 }{ \ln { 3 } } \cdot { u }^{ \frac { 1 }{ 2 } } }{ \frac { 1 }{ 2 } } +C[/tex]
[tex]\\ \\ =\frac { 1 }{ \ln { 3 } } \cdot { u }^{ \frac { 1 }{ 2 } }\cdot 2+C\\ \\ =\frac { 1 }{ \ln { 3 } } \cdot { 3 }^{ \frac { x }{ 2 } }\cdot 2+C\\ \\ =\frac { 2\cdot { 3 }^{ \frac { x }{ 2 } } }{ \ln { 3 } } +C[/tex]
However:
[tex]u={ 3 }^{ x }\\ \\ \therefore \quad \frac { du }{ dx } ={ 3 }^{ x }\cdot \ln { 3 } \\ \\ \therefore \quad du={ 3 }^{ x }\cdot \ln { 3 } dx\\ \\ \therefore \quad dx=\frac { 1 }{ { 3 }^{ x }\cdot \ln { 3 } } du=\frac { 1 }{ u\cdot \ln { 3 } } du[/tex]
So let's use:
[tex]\int { { u }^{ \frac { 1 }{ 2 } } } \cdot \frac { 1 }{ u\cdot \ln { 3 } } du\\ \\ =\int { \frac { 1 }{ \ln { 3 } } } \cdot { u }^{ -\frac { 1 }{ 2 } }du[/tex]
But you need to know that:
[tex]\int { k{ u }^{ n } } du\\ \\ =\frac { k{ u }^{ n+1 } }{ n+1 } +C[/tex]
Therefore:
[tex]\int { \frac { 1 }{ \ln { 3 } } } \cdot { u }^{ -\frac { 1 }{ 2 } }du\\ \\ =\frac { \frac { 1 }{ \ln { 3 } } \cdot { u }^{ \frac { 1 }{ 2 } } }{ \frac { 1 }{ 2 } } +C[/tex]
[tex]\\ \\ =\frac { 1 }{ \ln { 3 } } \cdot { u }^{ \frac { 1 }{ 2 } }\cdot 2+C\\ \\ =\frac { 1 }{ \ln { 3 } } \cdot { 3 }^{ \frac { x }{ 2 } }\cdot 2+C\\ \\ =\frac { 2\cdot { 3 }^{ \frac { x }{ 2 } } }{ \ln { 3 } } +C[/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.