Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Sienna has 80 yards of fencing to enclose a rectangular area. Find the dimensions that maximize the enclosed area. What is the maximum area?

Sagot :

[tex]2x+2y=80\ \ \ /:2\\\\2x:2+2y:2=80:2\\\\x+y=40\ \ \ /-x\\\\y=40-x\ \ \ (D_x:x\in(0;\ 40))[/tex]

[tex]Area=xy\\\\substitute\ y=40-x\\\\Area=x(40-x)=-x^2+40\\(it's\ quadratic\ function\ where\ a=-1;b=40;c=0)\\\\vertex\ of\ parabola:p=\frac{-b}{2a}\to p=\frac{-40}{2\cdot(-1)}=\frac{-40}{-2}=20-it's\ max\\\\x=20\ then\ y=40-20=20\\\\Answer:dimensions\ of\ rectangular\ is\ 20\ yd\ \times\ 20\ yd,\\and\ area\ is\ 20^2=400\ yd^2.[/tex]
View image Аноним