Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
1). Any decimal number that stops is a rational number, and even some
of them that never end are also rational (like 0.33333... is just 1/3.)
2). If 'x' is a perfect square, then the side of the square is the square root
of 'x', and that must be a counting number. (Integers also include zero,
and it can't be zero, or else 'x' would also be zero.)
3). Sorry, but NONE of those four statements is true.
4). Irrational numbers are not a subset of rational numbers.
They are a class all by themselves.
Answer:
1). Any decimal number that stops is a rational number, and even some
of them that never end are also rational (like 0.33333... is just 1/3.)
2). If 'x' is a perfect square, then the side of the square is the square root
of 'x', and that must be a counting number. (Integers also include zero,
and it can't be zero, or else 'x' would also be zero.)
3). Sorry, but NONE of those four statements is true.
4). Irrational numbers are not a subset of rational numbers.
They are a class all by themselves.
Step-by-step explanation:
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.