Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

50PTS!!!!
A golf ball is hit at a velocity of 42.0 m/s at an angle of 42.2° on Earth and on the Moon where the acceleration due to gravity is 1.62 m/s². How much higher will the maximum height be on the Moon compared to the maximum height on Earth?


Sagot :

Answer:

Approximately [tex]205\; {\rm m}[/tex] (assuming that [tex]g = 9.81\; {\rm m\cdot s^{-2}}[/tex] on Earth and that air resistance is negligible.)

Explanation:

Initial vertical velocity of the golf ball:

[tex]\begin{aligned} & (\text{initial vertical velocity}) \\ =\; & (\text{initial velocity})\, \sin(\text{angle of elevation}) \\ =\; & (42.0\; {\rm m\cdot s^{-1}}})\, \sin(42.2^{\circ}) \\ \approx\; & 28.212\; {\rm m\cdot s^{-1}}\end{aligned}[/tex].

Let [tex]u_{y}[/tex] denote the initial vertical of the ball. When the ball is at maximum height, the vertical velocity [tex]v_{y}[/tex] of the ball will be [tex]0[/tex]. Let [tex]x_{y}[/tex] denote the vertical displacement of the ball (height of the ball.)

Let [tex]a_{y}[/tex] denote the vertical acceleration of the ball. Under the assumptions, the vertical acceleration of the ball during the flight will be constantly [tex](-g)[/tex].

The SUVAT equation [tex]v^{2} - u^{2} = 2\, a\, x[/tex] relates these quantities. Rearrange this equation to find the maximum vertical displacement of the ball (value of [tex]x_{y}[/tex] when [tex]v_{y} = 0\; {\rm m\cdot s^{-1}}[/tex].)

[tex]{v_{y}}^{2} - {u_{y}^{2} = 2\, a_{y}\, x_{y}[/tex].

[tex]\begin{aligned}x_{y} &= \frac{{v_{y}}^{2} - {u_{y}}^{2}}{2\, a_{y}} \end{aligned}[/tex].

On the Earth, [tex]a_{y} = (-g) = (-9.81)\; {\rm m\cdot s^{-2}}[/tex]. Therefore:

[tex]\begin{aligned}x_{y} &= \frac{{v_{y}}^{2} - {u_{y}}^{2}}{2\, a_{y}} \\ &\approx \frac{(0\; {\rm m\cdot s^{-1}})^{2} - (28.212\; {\rm m\cdot s^{-1}})^{2}}{2\, ((-9.81)\; {\rm m\cdot s^{-2}})} \\ &\approx 40.57\; {\rm m}\end{aligned}[/tex].

On the Moon, it is given that [tex]g = 1.62\; {\rm m\cdot s^{-2}}[/tex], such that [tex]a_{y} = (-g) = (-1.62)\; {\rm m\cdot s^{-2}}[/tex]. Therefore:

[tex]\begin{aligned}x_{y} &= \frac{{v_{y}}^{2} - {u_{y}}^{2}}{2\, a_{y}} \\ &\approx \frac{(0\; {\rm m\cdot s^{-1}})^{2} - (28.212\; {\rm m\cdot s^{-1}})^{2}}{2\, ((-1.62)\; {\rm m\cdot s^{-2}})} \\ &\approx 245.65\; {\rm m}\end{aligned}[/tex].

The difference between the maximum heights will be approximately:

[tex](245.65\; {\rm m}) - (40.57\; {\rm m}) \approx 205\; {\rm m}[/tex].