Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
Approximately [tex]205\; {\rm m}[/tex] (assuming that [tex]g = 9.81\; {\rm m\cdot s^{-2}}[/tex] on Earth and that air resistance is negligible.)
Explanation:
Initial vertical velocity of the golf ball:
[tex]\begin{aligned} & (\text{initial vertical velocity}) \\ =\; & (\text{initial velocity})\, \sin(\text{angle of elevation}) \\ =\; & (42.0\; {\rm m\cdot s^{-1}}})\, \sin(42.2^{\circ}) \\ \approx\; & 28.212\; {\rm m\cdot s^{-1}}\end{aligned}[/tex].
Let [tex]u_{y}[/tex] denote the initial vertical of the ball. When the ball is at maximum height, the vertical velocity [tex]v_{y}[/tex] of the ball will be [tex]0[/tex]. Let [tex]x_{y}[/tex] denote the vertical displacement of the ball (height of the ball.)
Let [tex]a_{y}[/tex] denote the vertical acceleration of the ball. Under the assumptions, the vertical acceleration of the ball during the flight will be constantly [tex](-g)[/tex].
The SUVAT equation [tex]v^{2} - u^{2} = 2\, a\, x[/tex] relates these quantities. Rearrange this equation to find the maximum vertical displacement of the ball (value of [tex]x_{y}[/tex] when [tex]v_{y} = 0\; {\rm m\cdot s^{-1}}[/tex].)
[tex]{v_{y}}^{2} - {u_{y}^{2} = 2\, a_{y}\, x_{y}[/tex].
[tex]\begin{aligned}x_{y} &= \frac{{v_{y}}^{2} - {u_{y}}^{2}}{2\, a_{y}} \end{aligned}[/tex].
On the Earth, [tex]a_{y} = (-g) = (-9.81)\; {\rm m\cdot s^{-2}}[/tex]. Therefore:
[tex]\begin{aligned}x_{y} &= \frac{{v_{y}}^{2} - {u_{y}}^{2}}{2\, a_{y}} \\ &\approx \frac{(0\; {\rm m\cdot s^{-1}})^{2} - (28.212\; {\rm m\cdot s^{-1}})^{2}}{2\, ((-9.81)\; {\rm m\cdot s^{-2}})} \\ &\approx 40.57\; {\rm m}\end{aligned}[/tex].
On the Moon, it is given that [tex]g = 1.62\; {\rm m\cdot s^{-2}}[/tex], such that [tex]a_{y} = (-g) = (-1.62)\; {\rm m\cdot s^{-2}}[/tex]. Therefore:
[tex]\begin{aligned}x_{y} &= \frac{{v_{y}}^{2} - {u_{y}}^{2}}{2\, a_{y}} \\ &\approx \frac{(0\; {\rm m\cdot s^{-1}})^{2} - (28.212\; {\rm m\cdot s^{-1}})^{2}}{2\, ((-1.62)\; {\rm m\cdot s^{-2}})} \\ &\approx 245.65\; {\rm m}\end{aligned}[/tex].
The difference between the maximum heights will be approximately:
[tex](245.65\; {\rm m}) - (40.57\; {\rm m}) \approx 205\; {\rm m}[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.