Darina
Answered

Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

f(x)=x^3+ax^2+bx+3 where a and b are constants. bx Given that when f (x) is divided by (x+2) the remainder is 7, (a) show that 2a-b=6 Given also that when f (x) is divided by (x-1) the remainder is 4. (b) Find the value of a and the value of b
I don't know how solve it :(((((((


Sagot :

Part I - First synthetic division

You need to use synthetic division to come up with an expression for a and b:

(x + 2) is a factor, and the remainder is 7, so we can draw a synthetic division table...

coefficients = 1 for X^3; A for X^2; B for X^1; and 3

-2  |        1          A            B                 3
     
                        -2        -2(A-2)          4(A-2)-2B
 
            1        (A-2)    -2(A-2)+B      4(A-2)-2B + 3  
                            
                                    Remainder = 7

So...

4(A-2)-2B + 3 = 7

4 * (A - 2) - 2B + 3 = 7

4A - 8 - 2B =  4

4A - 2B      = 12

2A - B = 6
Proved

-------------------------------------------------------------------------------------------------------------------
Part II - Second Synthetic Division

We draw another synthetic division table, this time with (x - 1), so the number on the left hand side will be +1

1  |        1          A            B                 3
     
                        1         (A+1)         A+B+1
 
             1      (A+1)      A+B+1       A+B+4 
                            
                                    Remainder = 4

So... 

A + B + 4 = 4

A + B = 0

A = -B

-------------------------------------------------------------------------------------------------------------------
Part III - Solving for A and B with our two simultaneous equations

We know that A = -B and we also know that 2A - B = 6

Since we know that A is equal to -B We can substitute in for -B, to get:

2A - B = 6

Therefore...

2A + A = 6

3A = 6

A = 2

Again, as we know that A = -B, and as we have found that A = 2, we can see:

A = -B

Therefore...

2 = -B

B = -2

So our final answer is A = 2, B = -2

Hopefully this answer is more useful than the last one, and isn't so confusing!

We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.