Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Solve the following quadratic equation for complex solutions 3x^2- 7x + 11 = 0

Sagot :

To find the answer to this question, we have to use the quadratic formula:

[tex]x=\frac{-b^\pm\sqrt{b^2-4ac}}{2a}[/tex]

In this case, a has a value of 3, b has a value of -7 and c has a value of 11, replace for the given values:

[tex]\begin{gathered} x=\frac{-(-7)^\pm\sqrt{(-7)^2-4(3)(11)}}{2(3)} \\ x=\frac{7\pm\sqrt{49-132}}{6} \\ x=\frac{7\pm\sqrt{-83}}{6} \\ x=\frac{7\pm\sqrt{83}i}{6} \\ x1=\frac{7+\sqrt{83}i}{6} \\ x2=\frac{7-\sqrt{83}i}{6} \end{gathered}[/tex]

It means that the solutions of the equation are (7+√83i)/6 and (7-√83i)/6