Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's draw the situation presented in the problem:
In order to determine the radius of the circle that contains the bridge, we'll use the following formula:
[tex]r=\frac{h}{2}+\frac{w^2}{8h}[/tex]where h is the height of the arc and w is its width.
This formula is derived from the intersecting chords theorem:
[tex]a\cdot a=b\cdot c[/tex]Since in our case a is half of the width of the arc and b its height:
[tex]\frac{w}{2}\cdot\frac{w}{2}=h\cdot c[/tex][tex]\frac{w^2}{4}=h\mathrm{}c[/tex]dividing both sides by h:
[tex]\frac{w^2}{4h}=c[/tex]since the diameter of the circle is b+c, or in this case h+c:
[tex]d=h+\frac{w^2}{4h}[/tex]since the radius is half the diameter:
[tex]r=\frac{h}{2}+\frac{w^2}{8h}[/tex]Now, let's plug the data we were given into this formula:
[tex]r=\frac{3.3}{2}+\frac{23^2}{8\cdot3.3}[/tex][tex]r=1.65+\frac{529}{26.4}=1.65+0.0378=21.6878[/tex]So the radius of the circle will be 21.6878 ft.


We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.