Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Determine the number of solutions for the following system of linear equations. If there is only onesolution, find the solution.x + 3y – 2z = 6- 4x - 7y + 3z = 3- 7x – 4y - 3z = -5AnswerKeypadKeyboard ShortcutsSelecting an option will enable input for any required text boxes. If the selected option does not have anyassociated text boxes, then no further input is required.O No SolutionO Only One SolutionX =y =Z=Infinitely Many Solutions

Sagot :

First, let's clear z from equation 1:

[tex]\begin{gathered} x+3y-2z=6\rightarrow x+3y-6=2z \\ \rightarrow z=\frac{1}{2}x+\frac{3}{2}y-3 \end{gathered}[/tex]

Now, let's plug it in equations 2 and 3, respectively:

[tex]\begin{gathered} -4x-7y+3z=3 \\ \rightarrow-4x-7y+3(\frac{1}{2}x+\frac{3}{2}y-3)=3 \\ \\ \rightarrow-4x-7y+\frac{3}{2}x+\frac{9}{2}y-9=3 \\ \\ \rightarrow-\frac{5}{2}x-\frac{5}{2}y=12_{} \\ \end{gathered}[/tex][tex]\begin{gathered} -7x-4y-3z=-5 \\ \rightarrow-7x-4y-3(\frac{1}{2}x+\frac{3}{2}y-3)=-5 \\ \\ \rightarrow-7x-4y-\frac{3}{2}x-\frac{9}{2}y+3=-5 \\ \\ \rightarrow-\frac{17}{2}x-\frac{17}{2}y=-8 \end{gathered}[/tex]

We'll have a new system of equations:

[tex]\begin{gathered} -\frac{5}{2}x-\frac{5}{2}y=12_{} \\ \\ -\frac{17}{2}x-\frac{17}{2}y=-8 \end{gathered}[/tex]

Now, let's simplify each equation. To do so, we'll multiply the first one by -2/5 and the second one by -2/17. We'll get:

[tex]\begin{gathered} x+y=-\frac{24}{5} \\ \\ x+y=\frac{16}{17} \end{gathered}[/tex]

Now, let's solve each equation for y to see them as a pair of line equations:

[tex]\begin{gathered} y=-x-\frac{24}{5}_{} \\ \\ y=-x+\frac{16}{17} \end{gathered}[/tex]

Notice that this lines have the same slope. Therefore, they're parallel and do not intercept.

This way, we can conlcude that the original system has no solution.

Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.