Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
First, let's clear z from equation 1:
[tex]\begin{gathered} x+3y-2z=6\rightarrow x+3y-6=2z \\ \rightarrow z=\frac{1}{2}x+\frac{3}{2}y-3 \end{gathered}[/tex]Now, let's plug it in equations 2 and 3, respectively:
[tex]\begin{gathered} -4x-7y+3z=3 \\ \rightarrow-4x-7y+3(\frac{1}{2}x+\frac{3}{2}y-3)=3 \\ \\ \rightarrow-4x-7y+\frac{3}{2}x+\frac{9}{2}y-9=3 \\ \\ \rightarrow-\frac{5}{2}x-\frac{5}{2}y=12_{} \\ \end{gathered}[/tex][tex]\begin{gathered} -7x-4y-3z=-5 \\ \rightarrow-7x-4y-3(\frac{1}{2}x+\frac{3}{2}y-3)=-5 \\ \\ \rightarrow-7x-4y-\frac{3}{2}x-\frac{9}{2}y+3=-5 \\ \\ \rightarrow-\frac{17}{2}x-\frac{17}{2}y=-8 \end{gathered}[/tex]We'll have a new system of equations:
[tex]\begin{gathered} -\frac{5}{2}x-\frac{5}{2}y=12_{} \\ \\ -\frac{17}{2}x-\frac{17}{2}y=-8 \end{gathered}[/tex]Now, let's simplify each equation. To do so, we'll multiply the first one by -2/5 and the second one by -2/17. We'll get:
[tex]\begin{gathered} x+y=-\frac{24}{5} \\ \\ x+y=\frac{16}{17} \end{gathered}[/tex]Now, let's solve each equation for y to see them as a pair of line equations:
[tex]\begin{gathered} y=-x-\frac{24}{5}_{} \\ \\ y=-x+\frac{16}{17} \end{gathered}[/tex]Notice that this lines have the same slope. Therefore, they're parallel and do not intercept.
This way, we can conlcude that the original system has no solution.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.