Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

just need help understanding how to do these step by step explanation please

Just Need Help Understanding How To Do These Step By Step Explanation Please class=

Sagot :

Solution:

Given the simultaneous equations:

[tex]\begin{gathered} 4x+3y=15\text{ --- equation 1} \\ 5x-2y=13\text{ ---- equation 2} \end{gathered}[/tex]

To solve for x and y, using the elimination method, we have

[tex]\begin{gathered} 2\times(4x+3y=15)\Rightarrow8x+6y=30\text{ --- equation 3} \\ 3\times(5x-2y=13)\Rightarrow15x-6y=39\text{ --- equation 4} \end{gathered}[/tex]

Add up equations 1 and 2.

thus, this gives

[tex]\begin{gathered} 8x+15x+6y-6y=30+39 \\ \Rightarrow23x=69 \\ divide\text{ both sides by the coefficient of x, which is 23} \\ \frac{23x}{23}=\frac{69}{23} \\ \Rightarrow x=3 \end{gathered}[/tex]

To solve for y, substitute the value of 3 for x into equation 1.

thus, from equation 1

[tex]\begin{gathered} 4x+3y=15 \\ when\text{ x = 3,} \\ 4(3)+3y=15 \\ \Rightarrow12+3y=15 \\ add\text{ -12 to both sides,} \\ -12+12+3y=-12+15 \\ 3y=3 \\ divide\text{ both sides by the coefficient of y, which is 3} \\ \frac{3y}{3}=\frac{3}{3} \\ \Rightarrow y=1 \end{gathered}[/tex]

Hence, the solution to the equation is

[tex]\begin{gathered} x=3 \\ y=1 \end{gathered}[/tex]