Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Ask your questions and receive precise answers from experienced professionals across different disciplines. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

During World War I, mortars were fired from trenches 3 feet below ground level. The mortars had a velocity of150 ft/sec. Determine how long it will take for the mortar shell to strike its target.• What is the initial height of the rocket? -3 ft.• What is the maximum height of the rocket? 348.56 ft• How long does it take the rocket to reach the maximum height ? 4.68750 sec.• How long does it take the rocket to hit the ground (ground level)? 9.35 sec.• How long does it take the rocket to hit a one hundred feet tall building that is in it's downward path?[ Select]• What is the equation that represents the path of the rocket? Select]

Sagot :

[tex]\begin{gathered} y=-\frac{g}{2}t^2+v_0t+y_0 \\ g\text{ in feets per seconds is 32} \end{gathered}[/tex][tex]\begin{gathered} \text{Now the height of the bilding is 100 hence y must be 100, i.e., y=100, hence one has} \\ 100=-16t^2+150t-3 \\ or \\ -16t^2+150t-103=0 \\ \text{the solutions are given by:} \end{gathered}[/tex][tex]\begin{gathered} t_1=\frac{-150+\sqrt[]{150^2-4(-16)(-103)}}{2(-16)} \\ t_2=\frac{-150-\sqrt[]{150^2-4(-16)(-103)}}{2(-16)} \end{gathered}[/tex][tex]\begin{gathered} t_1=\frac{-150+\sqrt[]{22500-6592}}{-32} \\ t_1=\frac{-150+\sqrt[]{15908}}{-32} \\ t_1=\frac{-150+126}{-32} \\ t_1=\frac{24}{-32}\text{ This solution is negative, it doesnt work. Let us s}ee\text{ the other solution:} \end{gathered}[/tex][tex]\begin{gathered} t_2=\frac{-150-\sqrt[]{150^2-4(-16)(-103)}}{2(-16)} \\ t_2=\frac{-150-\sqrt[]{22500^{}-6592}}{-32} \\ t_2=\frac{-150-\sqrt[]{15908}}{-32} \\ t_2=\frac{-150-126}{-32} \\ t_2=\frac{-276}{-32} \\ t=\frac{276}{32} \\ t=8.6\text{seg} \\ It\text{ takes 8.6 second to hit the bilding} \end{gathered}[/tex][tex]\begin{gathered} \text{the general equation of the parabolic motion is }y=-\frac{g}{2}t^2+v_0t+y_0\text{. In this case, this is} \\ y=-16t^2+150t-3 \end{gathered}[/tex]