Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Sample proportion of .14 and standard deviation of.02, use empirical rule to construct a 95% confidence interval

Sample Proportion Of 14 And Standard Deviation Of02 Use Empirical Rule To Construct A 95 Confidence Interval class=

Sagot :

The empirical rule states that 65% of the data under the normal curve is within 1 standard deviation of the mean, 95% of the data is within 2 standard deviations of the mean, and 99% is within 3 standard deviations of the mean.

The approximation to the distribution of the sample proportion has the following shape:

[tex]\hat{p}\approx(p;\frac{p(1-p)}{n})[/tex]

The mean of the distribution is the sample proportion: μ= p

The standard deviation of the distribution is the square root of the variance

σ=√[p(1-p)/n]

For the given distribution:

μ= 0.14

σ= 0.02

95% of the distribution is μ ± 2σ

Upper bound:

[tex]\mu+2\sigma=0.14+2\cdot0.02=0.18[/tex]

Lower bound:

[tex]\mu-2\sigma=0.14-2\cdot0.02=0.10[/tex]

The 95% confidence interval is [0.10;0.18]

View image JedaiahH487865