Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

2) y = -5 +4V7-2 A) Domain: { All real numbers. } Range: { All real numbers. } B) Domain: x 22 Range: y 2-5 + C) Domain: 'x z 2 Range: ys-5 D) Domain: x 2-2 Range: y z 5

2 Y 5 4V72 A Domain All Real Numbers Range All Real Numbers B Domain X 22 Range Y 25 C Domain X Z 2 Range Ys5 D Domain X 22 Range Y Z 5 class=

Sagot :

Looking at the restrictions over the variable x, we know that the domain is:

[tex]x\ge2[/tex]

To find the range, notice that:

[tex]\sqrt[]{x-2}\ge0[/tex]

On the other hand, the function:

[tex]y=\sqrt[]{x-2}[/tex]

is an increasing function (its value grows when x grows), and can get as large as we want provided a sufficiently large value for x. Then, the range of such a function would be:

[tex]y\ge0[/tex]

Which does not get altered when we multiply the square root of (x-2) by 4.

Since the function:

[tex]y=-5+4\sqrt[]{x-2}[/tex]

is a 5-units shift downwards, then the variable y can take any value from -5 onwards.

Then, the range of the function is:

[tex]y\ge-5[/tex]

Another way to find the range is to isolate x from the equation:

[tex]\begin{gathered} y=-5+4\sqrt[]{x-2} \\ \Rightarrow y+5=4\sqrt[]{x-2} \\ \Rightarrow\frac{y+5}{4}=\sqrt[]{x-2} \\ \Rightarrow(\frac{y+5}{4})^2=x-2 \\ \Rightarrow x-2=(\frac{y+5}{4})^2 \\ \Rightarrow x=(\frac{y+5}{4})^2+2 \end{gathered}[/tex]

Since we already know that x must be greater than 2, then:

[tex]\begin{gathered} 2\le x \\ \Rightarrow2\le(\frac{y+5}{4})^2+2 \\ \Rightarrow0\le(\frac{y+5}{4})^2 \\ \Rightarrow0\le|\frac{y+5}{4}| \\ \Rightarrow0\le|y+5| \end{gathered}[/tex]

From here, there are two options:

[tex]\begin{gathered} 0\le y+5 \\ \Rightarrow-5\le y \\ \text{ Or} \\ 0\le-y-5 \\ \Rightarrow y\le-5 \end{gathered}[/tex]

Since we know an equation for y, then:

[tex]\begin{gathered} -5\le-5+4\sqrt[]{x-2} \\ \Rightarrow0\le4\sqrt[]{x-2} \end{gathered}[/tex]

Or:

[tex]\begin{gathered} -5+4\sqrt[]{x-2}\le-5 \\ \Rightarrow4\sqrt[]{x-2}\le0 \end{gathered}[/tex]

The second case is not true for every x.

Therefore:

[tex]-5\le y[/tex]

Therefore:

[tex]\begin{gathered} \text{Domain: }x\ge2 \\ \text{Range: }y\ge-5 \end{gathered}[/tex]

Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.