Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

What does the constant 1.6 reveal about the rate of change of the quantity?

What Does The Constant 16 Reveal About The Rate Of Change Of The Quantity class=

Sagot :

The form of the exponential growth/decay function is

[tex]f(x)=a(1\pm r)^x[/tex]

a is the initial amount

r is the rate of growth/decay per x years

We use + with growth and - with decay

Since the given function is

[tex]f(t)=2700(1.6)^{7t}[/tex]

Where t is time per week

Compare the two functions

[tex]\begin{gathered} a=2700 \\ (1+r)=1.6 \\ x=7t \end{gathered}[/tex]

Since 1.6 is greater than 1, then

The function is growth

Equate 1.6 by (1 + r) to find r

[tex]\begin{gathered} 1+r=1.6 \\ \\ 1-1+r=1.6-1 \\ \\ r=0.6 \end{gathered}[/tex]

Change it to percent by multiplying it by 100%

[tex]\begin{gathered} r=0.6\times100\text{ \%} \\ \\ r=60\text{ \%} \end{gathered}[/tex]

Since x = 7t then the time is every 7 weeks

The answer is

The function is growing exponentially at a rate of 60% every 7 weeks