At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

I have started number 7 but am not so sure about my answer just wanted to see if I was doing the problem right way.

I Have Started Number 7 But Am Not So Sure About My Answer Just Wanted To See If I Was Doing The Problem Right Way class=

Sagot :

To get a probability in a given set, we need to count the events we want to happen and divide by the total possibilities.

a) Here, we have a set that goes from 1 to 12, so there is 12 possibilities. We want to pick a prime number, so we need to count how many primes we have in this set.

1 is not prime.

Also, 4, 6, 8, 9, 10 and 12 are not primes.

So, we have the primes: 2, 3, 5, 7 and 11. There are 5.

So, the probability will be:

[tex]P=\frac{5}{12}\approx0.42[/tex]

b) Assuming the die are 6-sided going from 1 to 6, we can obtain the numbers from 1 + 1 = 2 until 6 + 6 = 12. However, there are differento number of possibilities. We still are looking for 2, 3, 5, 7 and 11, however now we have a total of 6 times 6 possibilities:

[tex]C_T=6\cdot6=36[/tex]

And we have to calculate the combinations for each prime and add them.

2: there is only 1 + 1, so:

[tex]C_2=1[/tex]

3: We can do 1 + 2 and 2 + 1, so there are 2:

[tex]C_3=2[/tex]

5: We have 1 + 4, 2 + 3, 3 + 2 and 4 + 1, so 4 possibilities:

[tex]C_5=4[/tex]

7: We have 1 + 6, 2 + 5, 3 + 4, 4 + 3, 5 + 2 and 6 + 1, 6 possibilities:

[tex]C_7=6[/tex]

11: We have 5 + 6 and 6 + 5 only. 2 possitilities:

[tex]C_{11}=2[/tex]

In total, we have:

[tex]C_2+C_3+C_5+C_7+C_{11}=1+2+4+6+2=15_{}[/tex]

So, the probability will be:

[tex]P=\frac{15}{36}\approx0.42[/tex]

It ended up being the same.

Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.