Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Find cosθ, cotθ, and secθ, where θ is the angle shown in the figure. Give exact values, not decimal approximations.cosθ=cotθ=secθ=

Find Cosθ Cotθ And Secθ Where Θ Is The Angle Shown In The Figure Give Exact Values Not Decimal Approximationscosθcotθsecθ class=

Sagot :

First let's find the missing value of the hypotenuse:

[tex]\begin{gathered} c^2=a^2+b^2 \\ a=4 \\ b=5 \\ \Rightarrow c^2=(4)^2+(5)^2=16+25=41 \\ \Rightarrow c=\sqrt[]{41} \\ \end{gathered}[/tex]

we have that the hypotenuse equals sqrt(41). Now we can find the values of the trigonometric functions:

[tex]\begin{gathered} \cos (\theta)=\frac{adjacent\text{ side}}{hypotenuse} \\ \Rightarrow\cos (\theta)=\frac{4}{\sqrt[]{41}} \\ \sec (\theta)=\frac{1}{\cos (\theta)} \\ \Rightarrow\sec (\theta)=\frac{1}{\frac{4}{\sqrt[]{41}}}=\frac{\sqrt[]{41}}{4} \\ \tan (\theta)=\frac{opposite\text{ side}}{adjacent\text{ side}} \\ \Rightarrow\tan (\theta)=\frac{5}{4} \\ \cot (\theta)=\frac{1}{\tan (\theta)} \\ \Rightarrow\cot (\theta)=\frac{1}{\frac{5}{4}}=\frac{4}{5} \end{gathered}[/tex]

Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.