At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer:
no solutions (they're parallel)
Step-by-step explanation:
(0,2)(3,1)
[tex]\frac{1-2}{3-0}[/tex]=[tex]\frac{-1}{3}[/tex]
(0,-1)(3,-2)
[tex]\frac{-2-(-1)}{3-0}[/tex]=[tex]\frac{-1}{3}[/tex]
Answer:
No solution
Step-by-step explanation:
Solutions of a system of linear equations represented in a graph:
- Intersecting lines: One common point = one solution.
- Parallel lines: No common point = no solutions.
- Coincident lines: Both equations give the same line = infinitely many solutions.
From inspection of the graph, the lines are parallel. Therefore, there are no solutions.
------------------------------------------------------------------------
To find the solution of a system of equations given by description only, first find the slopes of the lines by substituting the given points into the slope formula.
Given points for line 1:
- (x₁, y₁) = (0, 2)
- (x₂, y₂) = (3, 1)
[tex]\implies \textsf{slope}\:(m)=\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{1-2}{3-0}=-\dfrac{1}{3}[/tex]
Given points for line 2:
- (x₁, y₁) = (0, -1)
- (x₂, y₂) = (3, -2)
[tex]\implies \textsf{slope}\:(m)=\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{-2-(-1)}{3-0-x_1}=-\dfrac{1}{3}[/tex]
As the slopes of both lines are the same, the lines are parallel.
If two lines are parallel, they will never intersect and so there is no solution to the given system of equations.

Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.