Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

a normal window has the shape of a rectangle surmounted by a semicircle. if the perimeter of the window is 34 ft, express the area A of the window as a function of the width x of the window

Sagot :

The 34 feet perimeter and width, x, of the window which is in the shape of a rectangle surmounted by a semicircle is, A = 17•x - x²•(1/2 - π/8)

How can the area of the window be expressed as a function of x?

The shape of the window = A rectangle surmounted by a semicircle

Perimeter of the window, P = 34 feet

Width of the window = x

Required; The area, A, of the window as a function of x

Solution:

Diameter of the semicircle = x

Length of the semicircular arc = π•x/2

Let y represent the height of the window, we have;

P = 2•y + x + π•x/2 = 34

Therefore;

y = (34 - (x + π•x/2))/2 = 17 - x•(1 + π/2)/2

Area of the window, A = x × y + π•x²/8

Which gives;

A = x × (17 - x•(1 + π/2)/2) + π•x²/8 = 17•x - x²/2 - x²•π/8

A = 17•x - x²/2 - x²•π/8 = 17•x - x²•(1/2 - π/8)

Therefore;

Window area, A = 17•x - x²•(1/2 - π/8)

Learn more writing equations here:

https://brainly.com/question/28158983

#SPJ1