Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
The nth term of the sequence is 2n - 8
Equation of a function
The nth term of an arithmetic progression is expressed as;
Tn = a + (n - 1)d
where
a is the first term
d is the common difference
n is the number of terms
Given the following parameters
a = f(1)=−6
f(2) = −4
Determine the common difference
d = f(2) - f(1)
d = -4 - (-6)
d = -4 + 6
d = 2
Determine the nth term of the sequence
Tn = -6 + (n -1)(2)
Tn = -6+2n-2
Tn = 2n - 8
Hence the nth term of the sequence is 2n - 8
Learn more on nth term of an AP here: https://brainly.com/question/19296260
#SPJ1
By definition, we have
[tex]f(n) = f(n - 1) + f(n - 2)[/tex]
so that by substitution,
[tex]f(n-1) = f(n-2) + f(n-3) \implies f(n) = 2f(n-2) + f(n-3)[/tex]
[tex]f(n-2) = f(n-3) + f(n-4) \implies f(n) = 3f(n-3) + 2f(n-4)[/tex]
[tex]f(n-3) = f(n-4) + f(n-5) \implies f(n) = 5f(n-4) + 3f(n-5)[/tex]
[tex]f(n-4) = f(n-5) + f(n-6) \implies f(n) = 8f(n-5) + 5f(n-6)[/tex]
and so on.
Recall the Fibonacci sequence [tex]F(n)[/tex], whose first several terms for [tex]n\ge1[/tex] are
[tex]\{1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \ldots\}[/tex]
Let [tex]F_n[/tex] denote the [tex]n[/tex]-th Fibonacci number. Notice that the coefficients in each successive equation form at least a part of this sequence.
[tex]f(n) = f(n-1) + f(n-2) = F_2f(n-1) + F_1 f(n-2)[/tex]
[tex]f(n) = 2f(n-2) + f(n-3) = F_3 f(n-2) + F_2 f(n-3)[/tex]
[tex]f(n) = 3f(n-3) + 2f(n-4) = F_4 f(n-3) + F_3 f(n-4)[/tex]
[tex]f(n) = 5f(n-4) + 3f(n-5) = F_5 f(n-4) + F_4 f(n-5)[/tex]
[tex]f(n) = 8f(n-5) + 5f(n-6) = F_6 f(n-5) + F_5 f(n-6)[/tex]
and so on. After [tex]k[/tex] iterations of substituting, we would end up with
[tex]f(n) = F_{k+1} f(n - k) + F_k f(n - (k+1))[/tex]
so that after [tex]k=n-2[/tex] iterations,
[tex]f(n) = F_{(n-2)+1} f(n - (n-2)) + F_{n-2} f(n - ((n-2)+1)) \\\\ f(n) = f(2) F_{n-1} + f(1) F_{n-2} \\\\ \boxed{f(n) = -4 F_{n-1} - 6 F_{n-2}}[/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.