Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Two uncharged spheres are separated by 1.70 m. If 2.40 ✕ 10¹² electrons are removed from one sphere and placed on the other, determine the magnitude of the Coulomb force (in N) on one of the spheres, treating the spheres as point charges.


_______N

**Hint** Find the net charge on each sphere and substitute values into Coulomb's law.


Sagot :

The magnitude of the Coulomb force (in N) on one of the spheres, given the data is 4.59×10⁻⁴ N

How to determine the charge on each spheres

Sphere 1 losses 2.40×10¹² electrons

But

1 electron = 1.6x10¯¹⁹ C

Thus,

Charge on sphere 1 = +1.6x10¯¹⁹ × 2.40×10¹² = +3.84×10¯⁷ C

Sphere 2 gains 2.40×10¹² electrons

But

1 electron = 1.6x10¯¹⁹ C

Thus,

Charge on sphere 2 = -1.6x10¯¹⁹ × 2.40×10¹² = -3.84×10¯⁷ C

How to determine the coulomb force

  • Charge on sphere 1 (q₁) = +3.84×10¯⁷ C
  • Charge on sphere 2 (q₂) = 3.60 mC = -3.84×10¯⁷ C
  • Electric constant (K) = 9×10⁹ Nm²/C²
  • Distance apart (r) = 1.7 m
  • Force (F) =?

Using the Coulomb's law equation, the force can be obtained as illustrated below:

F = Kq₁q₂ / r²

F = (9×10⁹ × 3.84×10¯⁷ × 3.84×10¯⁷) / (1.7)²

F = 4.59×10⁻⁴ N

Thus, the magnitude of the Coulomb's force is 4.59×10⁻⁴ N

Learn more about Coulomb's law:

https://brainly.com/question/506926

#SPJ1