At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
The equation of a line that exists perpendicular to line g contains (P, Q) exists x + 4y = 4Q + P.
How to estimate the equation of the line that exists perpendicular to line g that contains (p, q) coordinate plane with line g?
Given: Coordinate plane with line g that passes through the points (-2,6) and (-3,2).
The coordinate of G: (-2,6) and (-3,2)
Let, [tex]${data-answer}amp;\left(x_{1}, y_{1}\right)=(-2,6) \\[/tex] and [tex]${data-answer}amp;\left(x_{2}, y_{2}\right)=(-3,2)[/tex]
The slope of a line [tex]$\mathbf{g}$[/tex] :
[tex]$m &=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\[/tex]
[tex]$m &=\frac{2-6}{-3-(-2)} \\[/tex]
[tex]$m &=\frac{-4}{-1} \\[/tex]
m = 4
So, the slope of a line g exists 4.
To find the slope of a line perpendicular to g,
[tex]${data-answer}amp;m_{1}=-\frac{1}{m} \\[/tex]
[tex]${data-answer}amp;m_{1}=-\frac{1}{4}[/tex]
The equation of the slope point form of the line exists
[tex]$\left(y-y_{1}\right)=m\left(x-x_{1}\right)$[/tex]
[tex]$y-Q=-\frac{1}{4}(x-P)$[/tex]
[tex]$4 y-4 Q=-x+P$[/tex]
[tex]$x+4 y=4 Q+P$[/tex]
Therefore, the equation of a line that exists perpendicular to line g contains (P, Q) exists x + 4y = 4Q + P.
To learn more about the equation of line refer to:
https://brainly.com/question/11552995
#SPJ4
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.