Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
The nth taylor polynomial for the given function is
P₄(x) = ln5 + 1/5 (x-5) - 1/25*2! (x-5)² + 2/125*3! (x-5)³ - 6/625*4! (x - 5)⁴
Given:
f(x) = ln(x)
n = 4
c = 3
nth Taylor polynomial for the function, centered at c
The Taylor series for f(x) = ln x centered at 5 is:
[tex]P_{n}(x)=f(c)+\frac{f^{'} (c)}{1!}(x-c)+ \frac{f^{''} (c)}{2!}(x-c)^{2} +\frac{f^{'''} (c)}{3!}(x-c)^{3}+.....+\frac{f^{n} (c)}{n!}(x-c)^{n}[/tex]
Since, c = 5 so,
[tex]P_{4}(x)=f(5)+\frac{f^{'} (5)}{1!}(x-5)+ \frac{f^{''} (5)}{2!}(x-5)^{2} +\frac{f^{'''} (5)}{3!}(x-5)^{3}+.....+\frac{f^{n} (5)}{n!}(x-5)^{n}[/tex]
Now
f(5) = ln 5
f'(x) = 1/x ⇒ f'(5) = 1/5
f''(x) = -1/x² ⇒ f''(5) = -1/5² = -1/25
f'''(x) = 2/x³ ⇒ f'''(5) = 2/5³ = 2/125
f''''(x) = -6/x⁴ ⇒ f (5) = -6/5⁴ = -6/625
So Taylor polynomial for n = 4 is:
P₄(x) = ln5 + 1/5 (x-5) - 1/25*2! (x-5)² + 2/125*3! (x-5)³ - 6/625*4! (x - 5)⁴
Hence,
The nth taylor polynomial for the given function is
P₄(x) = ln5 + 1/5 (x-5) - 1/25*2! (x-5)² + 2/125*3! (x-5)³ - 6/625*4! (x - 5)⁴
Find out more information about nth taylor polynomial here
https://brainly.com/question/28196765
#SPJ4
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.