Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
The slope of tangent line at point(4, 2pi) is undefined.
For given question,
We have been given a polar equation r = 2 + 2cos(θ)
We need find dy/dx as well as the slope of tangent line at point(4, 2π).
We know that, for polar equation we use,
x = r cos(θ) and y = r sin(θ)
plug the given value of r into these equations we get:
⇒ x = r cos(θ)
⇒ x = (2 + 2cos(θ) ) × cos(θ)
⇒ x = 2(cos(θ) + cos²(θ))
⇒ x = 2cos(θ) + 2cos²(θ)
Similarly,
⇒ y = r sin(θ)
⇒ y = (2 + 2cos(θ) ) × sin(θ)
⇒ y = 2(sin(θ) + sin(θ)cos(θ))
⇒ y = 2sin(θ) + 2sin(θ)cos(θ)
Now we find derivative of x and y with respect to theta.
[tex]\Rightarrow \frac{dx}{d\theta} =-2sin(\theta)+2(-2cos(\theta)sin(\theta))\\\\\Rightarrow \frac{dx}{d\theta} =-2sin(\theta)-2sin(2\theta)[/tex] .............(1)
Similarly,
[tex]\Rightarrow \frac{dy}{d\theta}=2cos(\theta)+2(cos^2(\theta)-sin^2(\theta))\\\\\Rightarrow \frac{dy}{d\theta}=2cos(\theta)+2(cos(2\theta))[/tex] ..............(2)
Now we find dy/dx
⇒ dy/dx = (dy/dθ) / (dx/dθ)
From (1) and (2),
[tex]\Rightarrow \frac{dy}{dx} =\frac{2cos(\theta)+2cos(2\theta)}{-2sin(\theta)-2sin(2\theta)} \\\\\Rightarrow \frac{dy}{dx} =\frac{2(cos(\theta)+cos(2\theta))}{-2(sin(\theta)+sin(2\theta))}\\\\\Rightarrow \frac{dy}{dx} =-\frac{cos(\theta)+cos(2\theta)}{sin(\theta)+sin(2\theta)}[/tex]
We know that The slope of tangent line is given by dy/dx.
So, the slope is: [tex]m =-\frac{cos(\theta)+cos(2\theta)}{sin(\theta)+sin(2\theta)}[/tex]
Now we need to find the slope of tangent line at point(4, 2pi)
Substitute θ = 2π in above slope formula.
[tex]\Rightarrow m =-\frac{cos(2\pi)+cos(2\times 2\pi)}{sin(2\pi)+sin(2\times 2\pi)}\\\\\Rightarrow m=-\frac{1+cos(4\pi)}{0+sin(4\pi)}\\\\\Rightarrow m=-\frac{1+cos(4\pi)}{sin(4\pi)}[/tex]
⇒ m = ∞
The slope of tangent line at point(4, 2pi) is not defined.
This means, the tangent line must be parallel to Y-axis.
Therefore, the slope of tangent line at point(4, 2pi) is undefined.
Learn more about the slope here:
https://brainly.com/question/10785137
#SPJ4
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.