At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
Laplace transforms turn a Differential equation into an algebraic, so we can solve easier.
y'= pY-y(0)
y"=p²Y - py(0)- y'(0)
Substituting these in differential equation :
p²Y -py (0) -y' (0)-6(pY-y(0)) + 13Y
Substituting in the initial conditions given , fact out Y, and get:
Y( p²-6p+13) = -3
Y=-3/ p²-6p+13
now looking this up in a table to Laplace transformation we get:
y=-3/2.e³т sin(2t)
for the last one, find the Laplace of t∧2 . which is 2/p³
pY - y(0)+ 5Y= 2/p³
Y= 2/p³(p+5)
Taking partial fractions:
Y=-2/125(p+5) + 2/125p - 2/25p² + 2/5p³
Learn more about differential equation here:
https://brainly.com/question/14620493
#SPJ4
Answer:
The integral transform that converts a function of a real variable to a function of a complex variable is called Laplace transform. first we need to substitute y' and y" in differential equation then finding Laplace transformation and at last taking partial fractions.
Given: y'= pY-y(0)
y"=p²Y - py(0)- y'(0)
Putting y' and y" in differential equation :
p²Y -py (0) -y' (0)-6(pY-y(0)) + 13Y
Substituting in the initial conditions given , fact out Y, and get:
Y( p²-6p+13) = -3
Y=-3/ p²-6p+13
by Laplace transform we get:
y=-3/2.e³т sin(2t)
for the last one, find the Laplace transform of t∧2 . which is 2/p³
pY - y(0)+ 5Y= 2/p³
Y= 2/p³(p+5)
Taking partial fractions:
Y=-2/125(p+5) + 2/125p - 2/25p² + 2/5p³
Learn more about Laplace transform here:
https://brainly.com/question/1597221
#SPJ4
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.