Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
The minimum and maximum values are (16/9)√3 and -(16/9)√3.
According to the statement
we have given that the function
First of all, since the constraint's graph is a circle, which is a closed loop, and f is continuous in [tex]R^2[/tex], there must exist a constrained global maximum and minimum value.
Lagrange Multipliers:
f(x,y) = xy^2
g(x,y) = x^2 + y^2
We want ∇f = λ∇g so we get the following system of equations
1. y^2 = 2λx
2. 2xy = 2λy
3. x^2 + y^2 = 4 ← The constraint.
Equation 2 implies that y = 0 or λ = x
We can ignore y = 0, since that will make f(x,y) = 0 and clearly f(x,y) takes on both positive and negative values subject to the constraint.
Plugging in the alternative, λ = x to equation 1 gives y^2 = 2x^2.
Plugging this into the constraint gives 3x^2 = 4 so that x^2 = 4/3 and y^2 = 8/3
Taking square roots gives
x = ±√(4/3) = ±(2/3)√3
y = ±√(8/3) = ±(2/3)√6
At the points < (2/3)√3 , ±(2/3)√6 >, f(x,y) = (16/9)√3 ← Maximum
At the points < -(2/3)√3 , ±(2/3)√6 >, f(x,y) = -(16/9)√3 ← Minimum
So, The minimum and maximum values are (16/9)√3 and -(16/9)√3.
Learn more about minimum and maximum here
https://brainly.com/question/15116471
#SPJ4
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.