Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Use Stokes' Theorem to evaluate the double integral of the curl of F

F(x, y, z) = e^(xy) cos(z)i + x^2 zj + xyk,

S is the hemisphere
x = radical 49 − y^2 − z^2
oriented in the direction of the positive x-axis.


Sagot :

Stokes' theorem relates the surface integral of the curl of [tex]\vec F[/tex] across [tex]S[/tex] to the line integral of [tex]\vec F[/tex] along the boundary of [tex]S[/tex].

The boundary of [tex]S[/tex] is a circle with radius 7 centered at the origin in the [tex]x,y[/tex]-plane. Parameterize this path by

[tex]\vec r(t) = 7\cos(t)\,\vec\imath + 7\sin(t)\,\vec\jmath[/tex]

with [tex]0\le t\le2\pi[/tex]. Observe that [tex]z=0[/tex], so [tex]\cos(z) = 1[/tex] and the [tex]\vec\jmath[/tex]-component of [tex]\vec F[/tex] contributes nothing. The double integral then reduces to

[tex]\displaystyle \iint_S (\nabla\times\vec F)\cdot d\vec S = \int_0^{2\pi} \vec F(\vec r(t)) \cdot \frac{d\vec r}{dt} \, dt \\\\ ~~~~~~~~ = \int_0^{2\pi} \left(e^{49\cos(t)\sin(t)}\,\vec\imath + 49\cos(t)\sin(t)\,\vec\jmath\right) \cdot \left(-7\sin(t)\,\vec\imath + 7\cos(t)\,\vec\jmath\right) \, dt \\\\ ~~~~~~~~ = -7 \int_0^{2\pi} e^{49\cos(t)\sin(t)} \sin(t) \, dt[/tex]

Observe that by substituting [tex]t=u+\pi[/tex], we have

[tex]\sin(t) = \sin(u+\pi) = \sin(u)\cos(\pi) + \cos(u)\sin(\pi) = -\sin(u)[/tex]

so that the integral over [tex][\pi,2\pi][/tex] can be expressed in terms of the integral over [tex][0,\pi][/tex] as

[tex]\displaystyle \int_\pi^{2\pi} e^{49\cos(t)\sin(t)} \sin(t) \, dt = \int_0^\pi -e^{49\cos(t)\sin(t)} \sin(t) \, dt[/tex]

Then the integrals over [tex][0,\pi][/tex] and [tex][\pi,2\pi][/tex] cancel each other and integral of the curl of [tex]\vec F[/tex] is

[tex]\displaystyle -7 \int_0^{2\pi} e^{49\cos(t)\sin(t)} \sin(t) \, dt = -7 \int_0^\pi 0 \, dt = \boxed{0}[/tex]

Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.