Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
The equation to model the situation is [tex]\mathbf{y = \dfrac{k}{x^2}}[/tex]. The constant for the variation is 2250.
What is the intensity of light?
The intensity of light from a lantern varies inversely to the square of the distance from the lantern.
From the given information:
- Let y be the intensity of light, and
- x be the distance from the lantern
Then:
[tex]\mathbf{y \alpha \dfrac{1}{x^2} }[/tex]
[tex]\mathbf{y = \dfrac{k}{x^2} }[/tex] here, k = constant.
2.
If y = 90 W/m² when the distance x = 5m
Then:
[tex]\mathbf{90 = \dfrac{k}{(5)^2}}[/tex]
k = 90 × 25
k = 2250
c.
The equation to model the situation by using the constant variation is:
[tex]\mathbf{y = \dfrac{2250}{x^2}}[/tex]
d.
If the light intensity y = 40, then x is determined as:
[tex]\mathbf{40 = \dfrac{2250}{x^2}}[/tex]
[tex]\mathbf{x = \sqrt{\dfrac{2250}{40}}}[/tex]
x = 7.5 m
e.
The light is needed in (225 × 1000)m = 225000 km of illumination.
f.
The lantern required for the new light estimation is:
y = 2250/225000
y = 0.01 intensity
Therefore, we can conclude that to get an intensity of 1 W/m², we need to put 100 lanterns.
Learn more about intensity of light here:
https://brainly.com/question/19791748
#SPJ1
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.