Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

how to solve part ii and iii

How To Solve Part Ii And Iii class=

Sagot :

(i) Given that

[tex]\tan^{-1}(x) + \tan^{-1}(y) + \tan^{-1}(xy) = \dfrac{7\pi}{12}[/tex]

when [tex]x=1[/tex] this reduces to

[tex]\tan^{-1}(1) + 2 \tan^{-1}(y) = \dfrac{7\pi}{12}[/tex]

[tex]\dfrac\pi4 + 2 \tan^{-1}(y) = \dfrac{7\pi}{12}[/tex]

[tex]2 \tan^{-1}(y) = \dfrac\pi3[/tex]

[tex]\tan^{-1}(y) = \dfrac\pi6[/tex]

[tex]\tan\left(\tan^{-1}(y)\right) = \tan\left(\dfrac\pi6\right)[/tex]

[tex]\implies \boxed{y = \dfrac1{\sqrt3}}[/tex]

(ii) Differentiate [tex]\tan^{-1}(xy)[/tex] implicitly with respect to [tex]x[/tex]. By the chain and product rules,

[tex]\dfrac d{dx} \tan^{-1}(xy) = \dfrac1{1+(xy)^2} \times \dfrac d{dx}xy = \boxed{\dfrac{y + x\frac{dy}{dx}}{1 + x^2y^2}}[/tex]

(iii) Differentiating both sides of the given equation leads to

[tex]\dfrac1{1+x^2} + \dfrac1{1+y^2} \dfrac{dy}{dx} + \dfrac{y + x\frac{dy}{dx}}{1+x^2y^2} = 0[/tex]

where we use the result from (ii) for the derivative of [tex]\tan^{-1}(xy)[/tex].

Solve for [tex]\frac{dy}{dx}[/tex] :

[tex]\dfrac1{1+x^2} + \left(\dfrac1{1+y^2} + \dfrac x{1+x^2y^2}\right) \dfrac{dy}{dx} + \dfrac y{1+x^2y^2} = 0[/tex]

[tex]\left(\dfrac1{1+y^2} + \dfrac x{1+x^2y^2}\right) \dfrac{dy}{dx} = -\left(\dfrac1{1+x^2} + \dfrac y{1+x^2y^2}\right)[/tex]

[tex]\dfrac{1+x^2y^2 + x(1+y^2)}{(1+y^2)(1+x^2y^2)} \dfrac{dy}{dx} = - \dfrac{1+x^2y^2 + y(1+x^2)}{(1+x^2)(1+x^2y^2)}[/tex]

[tex]\implies \dfrac{dy}{dx} = - \dfrac{(1 + x^2y^2 + y + x^2y) (1 + y^2) (1 + x^2y^2)}{(1 + x^2y^2 + x + xy^2) (1+x^2) (1+x^2y^2)}[/tex]

[tex]\implies \dfrac{dy}{dx} = -\dfrac{(1 + x^2y^2 + y + x^2y) (1 + y^2)}{(1 + x^2y^2 + x + xy^2) (1+x^2)}[/tex]

From part (i), we have [tex]x=1[/tex] and [tex]y=\frac1{\sqrt3}[/tex], and substituting these leads to

[tex]\dfrac{dy}{dx} = -\dfrac{\left(1 + \frac13 + \frac1{\sqrt3} + \frac1{\sqrt3}\right) \left(1 + \frac13\right)}{\left(1 + \frac13 + 1 + \frac13\right) \left(1 + 1\right)}[/tex]

[tex]\dfrac{dy}{dx} = -\dfrac{\left(\frac43 + \frac2{\sqrt3}\right) \times \frac43}{\frac83 \times 2}[/tex]

[tex]\dfrac{dy}{dx} = -\dfrac13 - \dfrac1{2\sqrt3}[/tex]

as required.