Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
[tex]dy \ = \ 0.1[/tex]
Step-by-step explanation:
Considering the Leibniz notation to represent the derivative of [tex]y[/tex] with respect to [tex]x[/tex], suppose [tex]y \ = \ f\left(x\right)[/tex] is a differentiable function, let [tex]dx[/tex] be the independent variable such that it can be designated with any nonzero real number, and define the dependent variable [tex]dy[/tex] as
[tex]dy \ = \ f'\left(x\right) \ dx[/tex],
where [tex]dy[/tex] is the function of both [tex]x[/tex] and [tex]dx[/tex]. Hence, the terms [tex]dy[/tex] and [tex]dx[/tex] are known as differentials
Dividing both sides of the equation by [tex]dy[/tex], yield the familiar expression
[tex]\displaystyle\frac{dy}{dx} \ = \ f'\left(x\right)[/tex].
Given that [tex]f\left(x\right) \ = \ x[/tex] and [tex]dx \ = \ 64.1 \ - \ 64 \ = \ 0.1[/tex], hence
[tex]f'\left(x\right) \ = \ 1[/tex].
Subsequently,
[tex]dy \ = \ f'\left(64\right) \ \times \ 0.1 \\ \\ dy \ = \ 1 \ \times \ 0.1 \\ \\ dy \ = \ 0.1[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.