Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
8. Domain: (-∞, -15) ∪ (-15, -5) ∪ (-5, ∞)
9. Domain: [7/13, ∞)
Range: [1, ∞)
Step-by-step explanation:
Question 8
Given rational function:
[tex]f(x)=\dfrac{x}{x^2+20x+75}[/tex]
Factor the denominator of the given rational function:
[tex]\implies x^2+20x+75[/tex]
[tex]\implies x^2+5x+15x+75[/tex]
[tex]\implies x(x+5)+15(x+5)[/tex]
[tex]\implies (x+15)(x+5)[/tex]
Therefore:
[tex]f(x)=\dfrac{x}{(x+15)(x+5)}[/tex]
Asymptote: a line that the curve gets infinitely close to, but never touches.
The function is undefined when the denominator equals zero:
[tex]x+15=0 \implies x=-15[/tex]
[tex]x+5=0 \implies x=-5[/tex]
Therefore, there are vertical asymptotes at x = -15 and x = -5.
Domain: set of all possible input values (x-values)
Therefore, the domain of the given rational function is:
(-∞, -15) ∪ (-15, -5) ∪ (-5, ∞)
---------------------------------------------------------------------------------
Question 9
Given function:
[tex]f(x)=\sqrt{13x-7}+1[/tex]
Domain: set of all possible input values (x-values)
As the square root of a negative number is undefined:
[tex]\implies 13x-7\geq 0[/tex]
[tex]\implies 13x\geq 7[/tex]
[tex]\implies x\geq \dfrac{7}{13}[/tex]
Therefore, the domain of the given function is:
[tex]\left[\dfrac{7}{13},\infty\right)[/tex]
Range: set of all possible output values (y-values)
[tex]\textsf{As }\:\sqrt{13x-7}\geq 0[/tex]
[tex]\implies \sqrt{13x-7}+1\geq 1[/tex]
Therefore, the range of the given function is:
[1, ∞)
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.