Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
The maximum error in the calculated surface area is 24.19cm² and the relative error is 0.0132.
Given that the circumference of a sphere is 76cm and error is 0.5cm.
The formula of the surface area of a sphere is A=4πr².
Differentiate both sides with respect to r and get
dA÷dr=2×4πr
dA÷dr=8πr
dA=8πr×dr
The circumference of a sphere is C=2πr.
From above the find the value of r is
r=C÷(2π)
By using the error in circumference relation to error in radius by:
Differentiate both sides with respect to r as
dr÷dr=dC÷(2πdr)
1=dC÷(2πdr)
dr=dC÷(2π)
The maximum error in surface area is simplified as:
Substitute the value of dr in dA as
dA=8πr×(dC÷(2π))
Cancel π from both numerator and denominator and simplify it
dA=4rdC
Substitute the value of r=C÷(2π) in above and get
dA=4dC×(C÷2π)
dA=(2CdC)÷π
Here, C=76cm and dC=0.5cm.
Substitute this in above as
dA=(2×76×0.5)÷π
dA=76÷π
dA=24.19cm².
Find relative error as the relative error is between the value of the Area and the maximum error, therefore:
[tex]\begin{aligned}\frac{dA}{A}&=\frac{8\pi rdr}{4\pi r^2}\\ \frac{dA}{A}&=\frac{2dr}{r}\end[/tex]
As above its found that r=C÷(2π) and r=dC÷(2π).
Substitute this in the above
[tex]\begin{aligned}\frac{dA}{A}&=\frac{\frac{2dC}{2\pi}}{\frac{C}{2\pi}}\\ &=\frac{2dC}{C}\\ &=\frac{2\times 0.5}{76}\\ &=0.0132\end[/tex]
Hence, the maximum error in the calculated surface area with the circumference of a sphere was measured to be 76 cm with a possible error of 0.5 cm is 24.19cm² and the relative error is 0.0132.
Learn about relative error from here brainly.com/question/13106593
#SPJ4
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.