Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Somebody please assist me solve

(2) The number of incoming calls reaching the switchboard of a computer per minute is thought to be a Poisson random variable with rate 6.5. Compute
i)The probability that during any given minute, the switchboard will
receive between 4 and 6 calls inclusive.
ii)The probability that the operator will have a breathing spell of at least
30 seconds between successive calls.
iii)The mean time lag between two calls.


Sagot :

P(n) = (e^-λ . λ^n)/n! where λ = 6.5
P(4) = (e^-6.5 x 6.5^4) / 4! = 0.111822…
P(5) = (e^-6.5 x 6.5^5) / 5! = 0.145368…
P(6) = (e^-6.5 x 6.5^6) / 6! = 0.157829…
P(between 4 and 6 inclusive) = 0.111822… + 0.145368… + 0.157829… = 0.4150 (4sf)

In a 30 second interval λ = 6.5 / 2 = 3.25
P(0) = (e^-3.25 x 3.25^0) / 0! = 0.03877
The probability of getting no calls in a 30 second interval is 0.03877 (ie less than 4%)

If the average number of calls in a minute is 6.5 then the average interval between calls will be 60/6.5 = 9.23 seconds.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.