Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Damek has five number cards lying on the table. There are two number cards with digit 1, two number cards with digit 2 and one number card with 0. How many different three-digit numbers can Damek form? (Number cannot being with 0).

(P.S. Is there a way to find the answer without listing all the possibilities?)


Sagot :

Damek can form 14 three-digit numbers from the given situation. Hence, only 14 possibilities.

There are five number cards on the table.

2- digit 1 card

1- digit 0 card

2- digit 2 card

There is a possibility of putting 1 or 2 in the hundredth place.

If 1 is put in the hundredth place then there are 3 possibilities for tenth place 1,0,2

If 1 is put there then there is a possibility of 2 numbers 0,2 in ones place

If 2 is put then there is a possibility of 3 numbers 0,1,2 in ones place

If 0 is put then there is a possibility of 2 numbers 1,2 in ones place.

So, there are 7=(2+3+2) possibilities that the hundredth place is filled by 1.

Similarly, there will be 7 possibilities that the hundredth place is filled by 2.

Hence, there are 14 possibilities as required by the problem.

So, the possibilities of 3-digit numbers are (given the number cannot start with 0) 14.

Learn more about permutation here-

brainly.com/question/1216161

#SPJ10

We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.