Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
We have to use the formula [tex]n = log_{r} (1+\frac{S_{n}(1-r) }{a})[/tex] to find the number of terms of a finite geometric sequence.
If a be the first term of a finite sequence, r be the common ratio between consecutive terms and n be the number of terms.
So, we have to use the formula of sum of sequence and then calculate it to reduce the equation to find the value of number of terms, that is n.
Then, Sum of the sequence (Sn) = [tex]\frac{a(1-r^{n}) }{1-r}[/tex]
Here, in the given problem,
Sum(Sn) = 280, First term of the sequence(a) = 40, Common ratio(r) = 0.75
So, Sn = [tex]\frac{a(1-r^{n}) }{1-r}[/tex]
⇒ [tex]1-r^{n} =\frac{S_{n}(1-r) }{a}[/tex]
⇒ [tex]r^{n} =1+\frac{S_{n}(1-r) }{a}[/tex]
⇒ [tex]n = log_{r} (1+\frac{S_{n}(1-r) }{a})[/tex]
Now you have to put the values and get the number of terms.
Learn more about finite geometric sequence here :
https://brainly.com/question/4407356
#SPJ10
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.