Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
All potential rational roots of f(x) = 15x¹¹ - 6x⁸ + x³ - 4x + 3, going by the rational rots theorem are {±1, ±1/3, ±1/5, ±1/15, ±3, ±3/5}.
The rational root theorem suggests that for a polynomial function
f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₂x² + a₁x¹ + a₀, all potential rational roots can be given by the formula p/q, where p is the set of all factors of ±a₀ and q is the set of all factors of ±aₙ.
In the question, we are asked to find the potential rational roots of
f(x) = 15x¹¹ - 6x⁸ + x³ - 4x + 3.
Comparing the given polynomial function with the standard polynomial function f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₂x² + a₁x¹ + a₀, we can say aₙ = 15, and a₀ = 3.
By rational root theorem, we know that all potential rational roots can be given by the formula p/q, where p is the set of all factors of ±a₀ and q is the set of all factors of ±aₙ.
Therefore, we can say that p = {factors of ±3} and q = {factors of ±15},
or, p = {±1, ±3}, q = {±1, ±3, ±5, ±15}.
Now, we can write all potential roots by calculating p/q.
p/q = {±1, ±1/3, ±1/5, ±1/15, ±3, ±3/5}
Therefore, all potential rational roots of f(x) = 15x¹¹ - 6x⁸ + x³ - 4x + 3, going by the rational roots theorem are {±1, ±1/3, ±1/5, ±1/15, ±3, ±3/5}.
Learn more about the rational roots theorem at
https://brainly.com/question/10937559
#SPJ10
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.