At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
1. m∠R > 90°
2. m∠S + m∠T < 90°
4. m∠R > m∠T
5. m∠R > m∠S
Step-by-step explanation:
General strategy
- prove the statement starting from known facts, or
- disprove the statement by finding a counterexample
Helpful fact: Recall that the Triangle Sum Theorem states that m∠R + m∠S + m∠T = 180°.
Option 1. m∠R > 90°
Start with m∠R > m∠S + m∠T.
Adding m∠R to both sides of the inequality...
m∠R + m∠R > m∠R + m∠S + m∠T
There are two things to note here:
- The left side of this inequality is 2*m∠R
- The right side of the inequality is exactly equal to the Triangle Sum Theorem expression
2* m∠R > 180°
Dividing both sides of the inequality by 2...
m∠R > 90°
So, the first option must be true.
Option 2. m∠S + m∠T < 90°
Start with m∠R > m∠S + m∠T.
Adding (m∠S + m∠T) to both sides of the inequality...
m∠R + (m∠S + m∠T) > m∠S + m∠T + (m∠S + m∠T)
There are two things to note here:
- The left side of this inequality is exactly equal to the Triangle Sum Theorem expression
- The right side of the inequality is 2*(m∠S+m∠T)
Substituting
180° > 2* (m∠S+m∠T)
Dividing both sides of the inequality by 2...
90° > m∠S+m∠T
So, the second option must be true.
Option 3. m∠S = m∠T
Not necessarily. While m∠S could equal m∠T, it doesn't have to.
Example 1: m∠S = m∠T = 10°; By the triangle sum Theorem, m∠R = 160°, and the angles satisfy the original inequality.
Example 2: m∠S = 15°, and m∠T = 10°; By the triangle sum Theorem, m∠R = 155°, and the angles still satisfy the original inequality.
So, option 3 does NOT have to be true.
Option 4. m∠R > m∠T
Start with the fact that ∠S is an angle of a triangle, so m∠S cannot be zero or negative, and thus m∠S > 0.
Add m∠T to both sides.
(m∠S) + m∠T > (0) + m∠T
m∠S + m∠T > m∠T
Recall that m∠R > m∠S + m∠T.
By the transitive property of inequalities, m∠R > m∠T.
So, option 4 must be true.
Option 5. m∠R > m∠S
Start with the fact that ∠T is an angle of a triangle, so m∠T cannot be zero or negative, and thus m∠T > 0.
Add m∠S to both sides.
m∠S + (m∠T) > m∠S + (0)
m∠S + m∠T > m∠S
Recall that m∠R > m∠S + m∠T.
By the transitive property of inequalities, m∠R > m∠S.
So, option 5 must be true.
Option 6. m∠S > m∠T
Not necessarily. While m∠S could be greater than m∠T, it doesn't have to be. (See examples 1 and 2 from option 3.)
So, option 6 does NOT have to be true.
Answer: Option 1, 2, 4, & 5 or
A. m∠R > 90°; B. m∠S + m∠T < 90°; D. m∠R > m∠T; & E. m∠R > m∠S
Step-by-step explanation: Trust Me!
- m∠R > 90°
- m∠S + m∠T < 90°
- m∠R > m∠T
- m∠R > m∠S
If you are working on Edge the answer is correct. The proof is down below. I hope someone finds this helpful.
If you found any of my answers helpful please like and subscribe. I mean choose my answer as Brainliest. I would appreciate it!
Good luck everyone! :)

We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.