Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Answer:
31
Step-by-step explanation:
We can solve the given equation for 'b', then find the integer values of 'a' that make 'b' a positive integer. There are 3 such values. One of these minimizes the objective function.
__
solve for b
ab +5b = 373 +6a . . . . . . isolate b terms by adding 6a
b = (6a +373)/(a +5) . . . . . divide by the coefficient of b
b = 6 +343/(a +5) . . . . . . . find quotient and remainder
integer solutions
The value of 'b' will only be an integer when (a+5) is a factor of 343. The divisors of 343 = 7³ are {1, 7, 49, 343}. so these are the possible values of a+5. Since a > 0, we must eliminate a+5=1. That leaves ...
a = {7, 49, 343} -5 = {2, 44, 338}.
Possible values of b are ...
b = 6 +343/{7, 49, 343} = 6 +{49, 7, 1} = {55, 13, 7}
Then possible (a, b) pairs are ...
(a, b) = {(2, 55), (44, 13), (338, 7)}
objective function
The values of the objective function for these pairs are ...
|a -b| = |2 -55| = 53
|a -b| = |44 -13| = 31 . . . . . the minimum value of the objective function
|a -b| = |338 -7| = 331
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.