At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
The linear regression equation that represents this data set is equal to y = 11.7x + 48.2 and an estimate of the calendar year is 2022.
How to write the linear regression equation?
First of all, we would determine the slope of the given data set by using this formula:
[tex]Slope = \frac{\sum (x-\bar x)(y-\bar y)}{\sum (x-\bar x)^2}[/tex]
For the sample mean (years), we have:
∑x = 0 + 1 + 2 + 3
∑x = 6.
∑x² = 0² + 1² + 2² + 3²
∑x² = 14.
For the sample mean (profits), we have:
∑y = 46 + 57 + 84 + 76
∑y = 263.
∑xy = (0 × 46) + (1 × 57) + (2 × 84) + (3 × 76)
∑xy = 453.
Now, we can determine the slope:
[tex]Slope = \frac{4(453) - 6(263)}{4(14) - 6^2} \\\\Slope = \frac{234}{20}[/tex]
Slope, m = 11.7.
For the intercept, we have:
[tex]Intercept = \frac{14(263) - 6(453)}{4(14) - 6^2} \\\\Intercept = \frac{964}{20}[/tex]
Intercept, c = 48.2.
Therefore, the linear regression equation is given by:
y = 11.7x + 48.2.
Since the profit would reach 144,000 dollars, the calendar year would be calculated as follows:
144 = 11.7x + 48.2
11.7x = 144 - 48.2
11.7x = 95.8
x = 95.8/11.7
x = 8.2.
For the calendar year, we have:
Year = 2014 + 8.2
Year = 2022.2 ≈ 2022.
Read more on linear regression here: https://brainly.com/question/16793283
#SPJ1
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.